1. INTRODUCTION	11
2. UNCONVENTIONAL AND GRINDING TECHNOLOGIES	13
2.1. Materials for solid oxide fuel cells: state of art and perspectives	13
2.1.1 SOFC concepts	15
2.1.2. General requirements for the SOFC element materials	16
2.1.3. SOFC electrolyte	17
2.1.4. SOFC Anode	21
2.1.5. SOFC Cathode	23
2.1.6. SOFC Interconnect	24
2.1.7. Sealants	25
2.1.8. Conclusions	25
2.2. Unconventional method of poly-metallic concretions output from	21
ocean's bottom	31 32
2.2.1. Poly-metallic concretions and their resources 2.2.2. Problem of concretions output	32 34
2.2.2. Problem of concretions output $2.2.3$. The final temperature of dry ice pellets CO_2	36
2.2.3. The final temperature of dry ice penets CO_2 2.2.4. Dry ice pellets (CO ₂) sublimation effect	37
2.2.4. Dry ice penets (CO ₂) submittion effect	39
2.3. High-pressure water jet application for coal conversion into new	59
generation fuel	43
2.3.1. Overview of coal processing technology	43
2.3.2. Production of micronized coal slurry	45
2.3.3. Potential possibilities of bio-chemical coal conversion	47
2.3.4. High-pressure water jet applications in direct coal fluidization	48
2.3.5. Conclusions	49
2.4. Basis of municipal solid waste utilization with high-pressure hydro-	
jetting technology	55
2.4.1. Solid waste	56
2.4.2. Experimental procedure	57
2.4.3. Waste sorting	60
2.4.4. Optimization of water jet parameters	61
2.4.5. Disintegration of solid waste compounds	63
2.4.6. Solid waste mixture densification	66
2.4.7. Process of municipal solid waste hydro-utilization	67
2.4.8. Conclusions	71
2.5. Strength of chosen metal materials in cosmic conditions	73
2.5.1. Test stand	74
2.5.2. Tensile tests in cosmic conditions	75
2.5.3. Stainless steel tensile tests	77
2.5.4. Brass tensile tests	79
2.5.5. Conclusions	81

2.6. Silicon carbide grains thermal–fatigue wear during grinding	83
2. 6.1. Silicon carbide as an abrasive material	84
2.6.2. Thermal stresses analysis of silicon carbide grains	85
2.6.3. Thermal-fatigue chipping of silicon carbide grains	88
2.6.4. Mechanism of silicon carbide grains chipping	91
2.6.5. Conclusions	93
2.7. Attritions grain's wear during grinding	95
2.7.1 Abrasive grain adhesive wear	95
2.7.2. Diffusive wear	98
2.7.3. Attritions wear	99
2.7.4. Model of grain's attritions wear	101
2.7.5. Conclusions	104
2.8. Bond fracture in grinding wheels	107
2.8.1. Grains mounting flexibility	108
2.8.2. Bonding bridges immediate cracking	110
2.8.3. Bonding bridges fatigue spalling	112
2.8.4. Influence of elementary effects on the binder cracking	116
2.8.5. Conclusions	119
2.9. Grinding wheels wear influence by elementary effects	121
2.9.1. Grinding wheels wear in the aspect of individual elementary processes	122
2.9.2. Global wear intensity	125
2.9.3. Grinding wheels wear influenced by elementary processes	128
2.9.4. Conclusions	132
2.10. Electrochemical phenomena occurring at the cathode during	
electrochemical grinding	135
2.10.1. Electrochemical grinding	136
2.10.2. Electrochemical phenomena and factors occurring in	
electrochemical grinding	137
2.10.3. Hydrogenization of the material being machined	147
2.10.4. Measurements of hydrogenization of investigated materials	147
2.10.5. Summary and conclusions	151
-	
3. BASIS OF HYDROJETTING TECHNOLOGY	153
3.1. High-speed observations of submerged water jets issuing from an	
abrasive water jet nozzle	153
3.1.1. Experimental apparatus and conditions	154
3.1.2. Experimental results and discussion	155
3.1.3. Conclusions	166
3.2. Monitoring of high-pressure hydrojet with ultra high speed camera	169
3.2.1. Experimental setup and research conditions	169
3.2.2. Abrasive-water jet micro-treatment	171
3.2.3. Explosives (HE) washing out from heavy artillery missiles	172
3.2.4. Single water jet drop impact	173

3.2.5. Conclusions	174
3.3. Distribution of abrasive grains and dry-ice pellets in high-pressure	
water jet used for surface treatment	177
3.3.1. Abrasive-water jet characteristic	178
3.3.2. Abrasive grains distribution methodology	178
3.3.3. Grains distribution in abrasive-water jet	183
3.3.4. Dry-ice pellets distribution in ice-water jet	185
3.3.5. Conclusions	188
3.4. Structure of high-pressure hybrid jet	191
3.4.1. High-pressure hybrid jet creation	192
3.4.2. Pressure distribution in a jet	192
3.4.3. Distribution of the jet thickness	194
3.4.4. Solid particles distribution in a jet	195
3.4.5. Conclusions	196
3.5. Chips shape during titanium alloys cutting with high-pressure abrasiv	
water jet	199
3.5.1. Research methodology	199
3. 5.2. Erosion zone research	201
3.5.3. Research of chips shape and specific	201
3.5.4. Conclusions	203
3.6. Chips created during titanium alloys milling assisted with high-pressu	
lubricoolant jet	205
3.6.1. Research methodics	206
3.6.2. Backward milling' chips shape	207
3.6.3. Concurrent milling' chips shape	208
3.6.4. Examinations of chips surface geometrical structure	209
3.6.5. Conclusions	210
3.7. Quality effects of surface treatment with high-pressure	
abrasive-water jet	213
3.7.1. Optimization of a sprinkler	214
3.7.2. The basis of high-pressure abrasive-water jet creation	215
3.7.3. The structure of abrasive-water jet	218
3.7.4. The influence of abrasive-water jet on workpiece	221
3.7.5. Conclusions	227
3.8. Large eddy simulation of self-oscillation pulsed water jet drawing in	
annulus fluid	229
3.8.1. The modulation tool of self-oscillation pulsed water jet drawing in	
annular fluid	230
3.8.2. Research of the large eddy simulation	231
3.8.3. Analysis on numerical simulation results	236
3.8.4. Experimental verification	240
3.8.5. Conclusions	244

3.9. Modeling methods of high-pressure abrasive-water jetting	247
3.9.1. Modeling of surface treatment	248
3.9.2. Surface treatment model based on genetic algorithm	252
4. ABRASIVE-WATER JETS PROPERTIES EXAMINATION	259
4.1. The quality of surface shaped by abrasive-water jet	259
4.1.1. Abrasive-water jet cutting process	260
4.1.2. Technological equipment	262
4.1.3. Methodics and research conditions	264
4.1.4. Geometrical structure of cut surface	265
4.1.5. Conclusions	270
4.2. Mechanism of chips creation during surface treatment using	
high-pressure abrasive-water jet	273
4.2.1. Surface shaping problem	274
4.2.2. Characteristics of material sample defects	276
4.2.3. Basis of material erosion	277
4.2.4. Creation of material spalling	278
4.2.5. Mechanism of chips shaping	279
4.2.6. Conclusions	281
4.3. High-pressure abrasive-water jet used for evaluation of hip	
articulations wear rate	283
4.3.1. Cutting of artificial articulations using AWJ method	284
4.3.2. Exploitation wear of artificial articulations	285
4.3.3. Surface wear of artificial articulations elements	286
4.3.4. Conclusions	289
4.4. Cutting and shaping of grinding tools by high pressure	
abrasive-water jet	291
4.4.1. Research methodology	291
4.4.2. Shaping of coarse-grained abrasive tools	292
4.4.3. Shaping of fine-grained abrasive tools	294
4.4.4. Conclusions	295
4.5. Abrasive-water jet treatment of ceramic materials	297
4.5.1. Research method	298
4.5.2. Cutting of silicon-corundum ceramic	298
4.5.3. Silicon carbide treatment	300
4.5.4. Conclusions	303
4.6. The basis of material treatment using cryogenic jet	305
4.6.1. Theoretical basis of cryogenic jet cutting	305
4.6.2. High-pressure water jet freezing	310
4.6.3. Effects of surface cleaning	311
4.6.4. Conclusions	314

4.7. High-pressure hybrid jet application for enamel decoating	3
4.7.1. Erosion of materials by abrasive grains jet	3
4.7.2. Enamel coating treatment using hybrid jet	3
4.7.3. The model of enamel coating removing by hybrid jet	3
4.7.4. Conclusions	3
4.8. Thermal effects of high-pressure water jet	3
4.8.1. Exams theoretical basis	3
4.8.2. Technological and experimental test stand	3
4.8.3. Method of examining	3
4.8.4. Thermodynamical state of the jet	3
4.8.5. Surface treatment temperature distribution	3
4.8.6. Thermal state in the cutting zone	3
4.8.7. Conclusions	3
4.9. Water-jet noise research	3
4.9.1. Experimental stand	3
4.9.2. Examination aim and methodology	3
4.9.3. Influence of water pressure	3
4.9.4. Water output influence	3
4.9.5. Jet spraying angle influence	3
4.9.6. The role of jet components	3
4.9.7. Abrasives type influence	3
4.9.8. Abrasive rate influence	3
4.9.9. Underwater cutting	3
4.9.10. Conclusions	3
5. PROCESSES OF HYDRO-JETTING TECHNOLOGY	3
5.1. Abrasive suspension jet generated according to BorJet system	3
5.1.1. Test stand	3
5.1.2. Treatment possibilities	3
5.1.3. The aspect of minimizing the abradant-consumption costs	3
5.1.4. The aspect of minimizing the total machining costs	3
5.1.4. Conclusions	3
5.2. Micro-cutting with suspended abrasive-water jet	3
5.2.1. General characteristic of MicroBorJet	3
5.2.2. High-pressure water pump	3
5.2.3. Working equipment	3
5.2.4. Abrasive-water suspension problem	3
5.2.5. Quality of cut surfaces	3
5.2.6. Conclusions	3
5.3. Modern water-jetting system application for ship's side	
5.3. Modern water-jetting system application for ship's side surface treatment	-
5.3. Modern water-jetting system application for ship's side	3 3 3

5.3.3. Mechanized equipment applications	375
5.4. Application of high-pressure water-ice jet for surface treatment	379
5.4.1. Basis of water-ice jet creation	379
5.4.2. Research methodology	382
5.4.3. Parameters of lacquer decoating	384
5.4.4. Effectiveness of decoating	387
5.4.5. Conclusions	388
5.5. Water pipeline renovation with high-pressure water jet technique	391
5.5.1. Theoretical basis	392
5.5.2. Experimental	393
5.5.3. Basis of hydrodynamic method of sediments washing out	396
5.5.4. Outline of hydrodynamic cleaning technology	397
5.6. Implementation of high-pressure water jet for abyssal	
well renovation	401
5.6.1. The problem of abyssal well exploitation	401
5.6.2. The problem of abyssal well renovation	403
5.6.3. TV-monitoring of abyssal well	404
5.6.4. Conditions of wells' hydro-jetting cleaning	405
5.6.5. Outline of wells regeneration technology	406
5.6.6. Renovation efficiency of abyssal well	407
5.6.7. Conclusions	409
5.7. Surface treatment effectiveness using rotary water jet	411
5.7.1. Characteristics of the rotation head	411
5.7.2. Rotation jet post-machining marks trajectories	412
5.7.3. Jetting effects analysis	414
5.7.4. Surface treatment model	415
5.7.5. Rotation jet effectiveness	416
5.7.6. Influence of kinematic parameters on surface treatment effectiveness	418
5.7.7. Conclusions	421
5.8. Application of abrasive waterjet technology for concrete cut	423
5.8.1. Research conditions	423
5.8.2. Cutting depth dependence on abrasive material type and its output	424
5.8.3. Influence of abrasive grains size on cutting effectiveness	425
5.8.4. Feed rate influence	426
5.8.5. Quality of the cut	426
5.8.6. Concrete cutting model with high-pressure abrasive-water jet	427
5.8.7. Hydro-jetting technology application for concrete materials renovation	429
5.8.8. Conclusions	430
5.9. High-pressure abrasive-water jet cutting comparison with other method	ods
of concentrated beam energy	431
5.9.1. Hybrid treatment methods of concentrated beam energy	431
5.9.2. Characteristics of chosen cutting methods	432
5.9.3. Machinability of cutting material	433

5.9.4. Conditions and possibilities of materials cut	434
5.9.5. Chemical emissivity in the cutting zone	435
5.9.6. Work-stand ecological difficulties of discussed cutting methods	435
5.9.7. Conclusions	436
6. DEVELOPMENT OF HYDROJETTING TECHNOLOGIES	439
6.1. Surface sculpture using high-pressure abrasive water jet	439
6.1.1. Theoretical basis	440
6.1.2. Experimental stand	442
6.1.3. Steering software for sculpturing process realization	443
6.1.4. Research conditions	444
6.1.5. Erosion characteristics of different materials	445
6.1.6. Abrasive-water jet sculpturing effects	447
6.1.7. Surface finish quality	449
6.1.8. Conclusions	450
6.2. Question of hydro-jetting nanotechnology	453
6.2.1. Submicro machining tool build	453
6.2.2. Problems of sub-micro cutting	456
6.2.3. Micro-sculpturing basing on photo image	457
6.2.4. Nano-coatings removal	459
6.2.5. Conclusions	460
6.3. High-pressure liquid jet usefulness for biomaterial grains additives	160
for orthopedic surgery	463
6.3.1. Research methodology	463
6.3.2. Experimental results of bones cross-cut	466
6.3.3. Abradant additives suitability	468
6.3.4. Conclusions	469
6.4. Aircraft honeycomb composites machining with AWJ method	471 472
6.4.1. Research method	
6.4.2. Honeycomb structures treatment	475
6.4.3. Quality of treated surface 6.4.4. Problems of treatment method	475 478
	478
6.4.5. Surface geometrical structure 6.4.6. Conclusions	480 481
	481
6.5. Treatment efficiency increase of ductile materials in grinding	483
assisted with waterjet 6.5.1. Theoretical bases	465 484
6.5.2. Earlier methods of grinding wheels' cleaning	484 486
6.5.3. Intensive methods of grinding wheels' cleaning	480 487
6.5.4. Minimization of grinding wheels' gumming effect	487
6.5.5. Conclusions	489 491
0.3.3. CONCLUSIONS	471

6.6. Comminution of different materials with high-pressure water jet	493
6.6.1. Research method	494
6.6.2. Particle size distribution of comminuted materials	496
6.6.3. Conclusions	498
6.7. High-pressure water jet applications for copper ore deposits mining	
and it's processing	501
6.7.1. Concept of hydro-jetting technologies implementation for mining	501
6.7.2. Research method	503
6.7.3. Copper ore comminution results	504
6.7.4. Surface of copper ore particles	506
6.7.5. Conclusions	506
6.8. Coal micronization utilizing with high-pressure water jet	511
6.8.1. Research methodics	512
6.8.2. Coal particles distribution	513
6.8.3. Coal particles surface	514
6.8.4. Conclusions	515
6.9. High explosives washing out from artillery ammunition using hydro-	
jetting technology	519
6.9.1. Experimental procedure	520
6.9.2. High explosives imitation	521
6.9.3. Granulometric fractions of washed out high explosive material	523
6.9.4. Washing-out process effectiveness	524
6.9.5. Surface morphology of washed HE material	525
6.9.6. Conclusions	526